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The shape of a two-dimensional viscous drop deforming in several time-dependent
flow fields, including that due to a potential vortex, has been studied. Vortex flow
was approximated by linearizing the induced velocity field at the drop centre, giving
rise to an extensional flow with rotating axes of stretching. A generalization of the
potential vortex, a flow we have called rotating extensional flow, occurs when the
frequency of revolution of the flow is varied independently of the shear rate. Drops
subjected to this forcing flow exhibit an interesting resonance phenomenon. Finally
we have studied drop deformation in an oscillatory extensional flow.

Calculations were performed at small but non-zero Reynolds numbers using an
ADI front-tracking/finite difference method. We investigate the effects of interfacial
tension, periodicity, viscosity ratio, and Reynolds number on the drop dynamics.
The simulation reveals interesting behaviour for steady stretching flows, as well as
time-dependent flows. For a steady extensional flow, the drop deformation is found to
be non-monotonic with time in its approach to an equilibrium value. At sufficiently
high Reynolds numbers, the drop experiences multiple growth–collapse cycles, with
possible axes reversal, before reaching a final shape. For a vortex flow, the long-
time deformation reaches a steady value, and the drop attains a revolving steady
elliptic shape. For rotating extensional flows as well as oscillatory extensional flows,
the maximum value of deformation displays resonance with variation in parameters,
first increasing and then decreasing with increasing interfacial tension or forcing
frequency. A simple ODE model with proper forcing is offered to explain the observed
phenomena.

1. Introduction
Drop deformation plays an important role in a number of natural and industrially

relevant multiphase flows. In such a flow the suspended phase disperses in drops of
varied sizes and shapes in the carrier phase. There is competing dynamics between
the interfacial tension, favouring spherical drops, and the flow tending to deform
them. The resulting drop shape affects the flow, giving rise to a two-way-coupled
interaction. Therefore a basic understanding of the drop dynamics is essential for an
accurate description of the rheology of the suspension. Moreover details of the flow
itself are of considerable theoretical interest, for they pose a challenging nonlinear
free-boundary problem, where boundary conditions are prescribed on a surface that
is determined only as a part of the solution.
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Since the pioneering research on viscous drop deformation by Taylor (1932, 1934,
1964), continued effort has provided major advances in our understanding of drop
behaviour and its effect on bulk properties (see Stone 1994, for a review). Taylor
invented the four-roll mill and successfully used it to study the deformation process.
Since then the apparatus has been applied almost exclusively to create a variety of
linear flows, combining stretching and rotation, that led to different deformations.
The experiments have provided invaluable insights into the deformation process,
and have shaped the underlying theoretical framework. Careful observations led to
broad classifications (Tanner & Huilgol 1975; Tanner 1976) such as strong flows,
which tend to cause large deformation, and weak flows, which do not. However the
classification is based on the local gradient of the flow, and is essentially valid only
for motions with constant stretch history (MCSH). Early on, the inadequacies of such
a static characterization for time-dependent flows were realized (Astarita 1979), and
accordingly more accurate criteria for general unsteady flows have been devised. But
they remained kinematic in nature, with no input from the effects of the drop on
the flow. Incorporation of the dynamics into the criteria was attempted by Olbricht,
Rallison & Leal (1982), who studied evolution equations for representative micro-
variables of deformation. Szeri, Wiggins & Leal (1991) introduced time-varying flow,
and studied the resultant non-autonomous equation from a dynamical system point of
view. The criteria emerging from their work went beyond the linear stability analysis
for the initiation of stretching, and encompassed information about global dynamics.
Most of these theoretical explorations were supported by experiments performed
with an improved computer-controlled four-roll mill developed by Bentley & Leal
(1986a, b).

A few years ago Deiber & Schowalter (1992) suggested the potential vortex as a
useful base flow to study micro-rheological behaviour. In this flow a drop or a blob
of polymer experiences a time-dependent non-viscometric stretching that provides
an interesting point of departure from the four-roll mill or the Maxwell orthogonal
rheometer. For turbulent flow of an emulsion or a polymeric solution, a potential
vortex could arguably provide pertinent information not accessible through a four-
roll mill. Furthermore, approximate experimental realization of a potential vortex is
possible (Hopfinger, Browand & Gagne 1982; Maxworthy, Hopfinger & Redekopp
1985). To investigate the viability and usefulness of such a device we report here the
results of numerical simulations of a Newtonian drop in a potential vortex and other
related flows.

The small particle size, and therefore the small Reynolds number of such viscosity-
dominated flows, has allowed a linearization in modelling. Most studies of drop
deformation have been restricted to linearized Stokes flow. Stokes flow has been
studied by semi-analytic methods at the limit of small deformation (Rallison 1984;
Stone 1994), or by boundary-element methods (Pozrikidis 1992). Free surface flows
have also been studied widely at the other limit, an inviscid potential flow. Although
the approximation is valid, and therefore has provided useful information for inertia-
driven dynamics of bubbles (Blake & Gibson 1987), the popularity of the approach is
largely due to its analytical tractability. Potential flow is also dealt with by a boundary
integral/element method that solves the Laplace equation. Recent years have seen
other means of directly solving the full Navier–Stokes equation for problems with
deformable surfaces, such as finite element or finite difference methods.

We use a front-tracking/finite difference method developed by Tryggvason and
coworkers (see e.g. Unverdi & Tryggvason 1988; Esmaeeli & Tryggvason 1998, 1999).
As a preliminary case study we here restrict our calculation to two dimensions.
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The problem at hand does not allow any axisymmetric reduction of the full three-
dimensional case. However the interesting physics that are revealed by the far less
expensive two-dimensional computation would have their qualitative analogues in the
actual problem, and hence the simplification is justified. Furthermore, useful guidelines
are provided for future three-dimensional undertakings. The original method has
been substantially enhanced with a time splitting ADI scheme allowing low Reynolds
number simulation. We are restricted to non-zero Reynolds number (the lowest
Reynolds number treated here is 0.1). However, our choice is dictated by the generality
over boundary element methods, and computational advantages over finite difference
(with a body-fitted coordinate system) or finite element implementations. Seth &
Pozrikidis (1995) have investigated the effects of finite Reynolds number on two-
dimensional drop deformation in a shear flow with a similar method. It is probably
also pertinent to mention that recently there have been other methods similar in spirit
to front-tracking, such as the level-set method, developed by Osher, Sethian and their
collaborators. These have been applied with success to a number of fluid problems
(Sussman & Smereka 1997). Sections 2, 3 and 4 describe the mathematical formulation
of the problem and its numerical implementation. The results are presented for three
different Reynolds numbers in § 5. The relevant parameters are systematically varied
and the effects collated and explained. In § 6 we summarize our findings. A simple
model capturing the essential trends of the numerical results is presented in the
Appendix. In a companion paper (Sarkar & Schowalter 2001) we have undertaken
an analytical study of the same phenomena which validates the numerical results,
and further explains the observations.

As mentioned above, one of the primary aims of the work is to investigate vortex
flow kinematics in drop deformation. However the linearized vortex model is a special
case of more general rotating extensional flows, where the axes of stretching are
rotating with time. We have furnished a detailed investigation of the effects of such
a flow on a drop. Lastly we consider the case of an oscillatory extensional flow.
All of the flows investigated here are extensional, non-vortical, and time dependent.
The importance of an extensional flow in drop deformation has been noted by
Taylor – a very viscous drop that would reach an equilibrium shape in a steady shear
with an arbitrarily large shear rate, would extend continuously in a two-dimensional
extensional flow, once the rate exceeds a critical value.

2. Vortex flow and other time-dependent flows
We elaborate here on the interesting kinematics of potential vortex flow with respect

to individual fluid elements or embedded drops or polymer blobs. A fluid element in a
potential vortex revolves around the origin of the vortex but experiences no rotation.
As the element revolves the principal axes of the stretching rotate about the centre
of the element (figure 1).

To illustrate further, we compare the flow with other possible time-periodic flows,
namely widely studied oscillatory shear flow and oscillatory extensional flow (with an
invariant axis of extension). In figure 2, cartoons of a drop in these three flows are
shown. In potential vortex flow, the drop does not rotate, due to absence of vorticity,
as it follows a periodic path around the vortex. However the flow is distinctly different
from oscillatory extensional flow, where axes of extension and contraction are always
along lines 1–3 and 2–4, alternatively. In the case of the vortex, the axes rotate,
and hence the maximum stretching takes place at different locations along the drop
interface.
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Figure 1. Velocity gradient in a potential vortex.
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Figure 2. Drops in different time-periodic linear flows: (a) oscillatory shear flow, (b) oscillatory
extensional (OE) flow, and (c) vortex/generalized rotating extensional (RE) flow.

Because of the linearization approximation used in the following analysis, a drop in
a vortex is, at any instant, subjected to a pure extensional flow, but the principal axes
of extension rotate (figure 1). In our numerical simulation the vortex field has been
represented by such a linear rotating extensional flow. The mathematical detail of the
approximation is provided below. For the case of a vortex the linear approximation
has a definite relationship between the shear rate of the flow and the frequency.
However this linear approximation to the vortex field also indicates a more general
flow field – namely a rotating extensional flow with independently varying shear rate
and frequency. We have included this variant as well as the oscillatory extensional
flow shown in figure 2(b) in our study.



A drop in time-periodic extensional flows: numerical simulation 181

3. Mathematical formulation
3.1. Governing equations

The velocity field u and the pressure p satisfy the equation of momentum conservation

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p+

∫
∂B

dxB κ nσ δ(x− xB) + ∇ · τ , (3.1)

in the entire domain Ω, consisting of the continuous fluid domain Ωc and the
suspended drop Ωd with appropriate boundary conditions at an arbitrary outer
boundary ∂Ω. Here σ is the interfacial tension, ∂B is the surface of the drop (front)
consisting of points xB , κ the local curvature, n the outward normal to the surface,
and δ(x− xB) is the (two-dimensional for the present problem) Dirac delta function.
The deviatoric stress tensor τ for an incompressible Newtonian fluid is given by

τ = 2µε = µ[∇u+ (∇u)T ], (3.2)

with µ being the viscosity, ε the strain-rate tensor, and the superscript T representing
the transpose of the velocity gradient ∇u. The contribution due to the interfacial
tension producing the jump in the normal stress across the interface is represented as
a (singular) distributed body force, anticipating its numerical implementation to be
described below. The flow field is incompressible,

∇ · u = 0. (3.3)

It is to be noted that the velocity field satisfies a single equation in both phases with
a spatially varying density ρ(x) that satisfies

Dρ

Dt
≡ ∂ρ

∂t
+ u · ∇ρ = 0. (3.4)

The other transport properties such as viscosity µ(x) can be similarly handled.
Moreover by applying the momentum equation (3.1) in a pill-box of vanishing
thickness straddling the front, one can recover traditional velocity and shear stress
continuity across the front, and the jump in the normal stress due to interfacial
tension (Jackson 1975, p. 36).

3.2. Imposed flow fields

For the vortex flow, we assume that a drop, which initially has a circular shape of
radius a, is situated at a large distance R from the vortex centre (figure 1), R � a.
The induced velocity field near the drop is represented by a linear approximation:

uV
0 (x) = E [xc(t)] · x = E [R cos θ(t), R sin θ(t)] · x = γ̇

(
sin 2θ − cos 2θ
− cos 2θ − sin 2θ

)
·
(
x
y

)
,

(3.5)

where E [xc(t)] is the velocity gradient tensor evaluated at the centre of the undeformed
drop xc(t) = {R cos θ(t), R sin θ(t)}, γ̇ = Γ/(2πR2), Γ being the circulation of the
vortex. θ(t) = 2πt/T = ωt/2 denotes the position of the centre xc, as it revolves around
the vortex with the circular speed vR = Γ/2πR. The time period of revolution of the
drop centre xc is given by T = 2πR/vR = 4π2R2/Γ = 2π/γ̇, and ω = 4π/T = 2γ̇ is the
corresponding circular frequency. Note that the flow field has double the frequency
of that due to the rotation around the vortex due to the symmetry at opposite points
across the vortex.
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The above field can be generalized to a rotational extensional flow uRE
0 which is

given by an equation similar to (3.5) but with independent ω and γ̇:

uRE
0 (x) = γ̇

(
sinωt − cosωt
− cosωt − sinωt

)
·
(
x
y

)
. (3.6)

For ω = 0, the flow reduces to a steady planar extensional flow.
Lastly, an oscillatory extensional flow is given by

uOE
0 = −γ̇ cosωt

(
0 1
1 0

)
·
(
x
y

)
, (3.7)

Both are periodic extensional flows, (3.6) with axes rotating, and (3.7) stretching and
contracting with the same frequency.

3.3. Boundary conditions

The kinematic condition appropriate for a material surface is imposed at the
fluid/fluid boundary and determines the movement of the interface ∂B:

dxB
dt

= u(xB). (3.8)

The velocity at a point on the interface u(xB) is related to the field velocity using the
property of the delta function:

u(xB) =

∫
Ω

dx δ(x− xB)u(x). (3.9)

The velocity field (3.5), (3.6) or (3.7), provides the external boundary condition at ∂Ω:

u(x ∈ ∂Ω) = u0(x) (3.10)

We have already noted that the interface conditions on stress/velocity continuities
are automatically met by the governing equation with spatially varying viscosities and
the distributed forces (due to interfacial tension) in the field equation.

3.4. Front-tracking preliminaries

The drop presents an instance of multiphase flows – a suspended phase with properties
(such as µ∗ and ρ∗ for viscosity and density) different from those (µ and ρ) in the
continuous phase. The solution of such problems conventionally involves solving
a governing set of equations for each phase, and matching them at the interface.
The present method reduces the multiphase to a single phase with spatially varying
properties, and thereby eliminates the explicit matching at the interface. For this
purpose, the material properties are written as

ρ(x) = ρ+ (ρ∗ − ρ)I(x), (3.11)

and

µ(x) = µ+ (µ∗ − µ)I(x), (3.12)

where I(x) is the indicator function

I(x) =

{
1, x ∈ Ωd
0, x ∈ Ωc. (3.13)

A smooth representation of the discontinuous indicator function is required for the
numerical implementation of (3.11) and (3.12). Applying the gradient operator to
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(3.13) we obtain

G(x) ≡ ∇I(x) = nδ1(n · (x− xB)), (3.14)

where δ1 is a one-dimensional delta function. (Note that in a two-dimensional Carte-
sian coordinate system δ(x − xB) = δ1(x − xB)δ1(y − yB)). Furthermore, using the
property of the delta function, we may write

G(x) =

∫
∂B

dxBG(xB)δ1(x− xB)T , (3.15)

since G(x) assumes non-zero values only on the front ∂B. The superscript T represents
the tangential direction to the interface. Substituting the definition of G(xB) from
(3.14), and taking the divergence, we obtain from (3.15) the following equation for
I(x):

∇2I(x) = ∇ · G(x) =

∫
∂B

dxB∇ · nδ(x− xB). (3.16)

The boundary condition satisfied by I(x) is I(x ∈ ∂Ω) = 0, because the interface
∂B, in the present case, is situated far from the domain boundary ∂Ω and does not
straddle it. Note that we have used the separability property of the delta function, i.e.

δ(x− xB) = δ1(n · (x− xB))δ1(x− xB)T . (3.17)

Once we have numerically solved (3.16) with a smooth surrogate of the delta function
(see § 4 below) for I(x), (3.11) and (3.12) readily furnish the desired ‘smooth’ fields for
the properties.

4. Numerical implementation
For a finite difference implementation, the physical domain, approximated here by a

large enough box (of size Lx = Ly = 10.0 in the unit of the drop radius) is discretized
by a regular square grid. The surface of the immersed drop of radius a (a/Lx,y � 1) is
described by line elements. Initially the elements are created by putting points on the
circle. The movement of the element vertices describes the evolving shape of the drop.
An adaptive regridding scheme is implemented that prevents the elements from being
excessively distorted. The scheme creates/destroys elements by the insertion/removal
of points on the existing front.

4.1. Front tracking

A smooth representation of the δ-function, needed for the numerical implementation
of (3.1), (3.9), and (3.16), is provided by Peskin (1977):

D(x− xB) = D1(x− xB)D1(y − yB), (4.1)

where

D(x− xB) =
1

4∆x

(
1 + cos

π

2∆x
(x− xB)

)
for |x− xB | 6 2∆x. (4.2)

The representation is explicitly separable in a Cartesian coordinate system and has
the desirable unit measure property (i.e. upon integration over a domain containing
xB , it results in unity). The approximation of the delta function is coupled with the
discretization of the computational domain: as the discretization length ∆x approaches
zero, the approximant approaches infinity, as required of a family of regular functions
approaching a delta function (Stakgold 1979, p. 110).
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Upon substitution of the above representation of the smoothed delta function and
discretization, generic integrals take the following forms:∫

Ω

dx f(x) δ(x− xB) '∑
i

∆x∆y f(xi)D(xi − xB), (4.3)

where i sums over all grid points in the domain, and∫
∂B

dxB f(x)δ(x− xB) '∑
j

∆ljf(xj)D(xj − xB). (4.4)

Here the index j sums over all front elements, and ∆lj represents the length of the
jth element on the front. Expressions similar to (4.3) are used for (3.9), and those like
(4.4) are used for the interfacial tension term in (3.1), and in the right-hand side of
(3.16). Such representations allow a back-and-forth coupling between the discretized
front and the domain variables around it. Broadly speaking we have replaced the
sharp interface separating the phases by a region of sharp variation in properties,
which has a finite thickness, approximately 4∆x.

4.2. Finite difference

This formulation leaves us with a system of partial differential equations with smooth
spatially varying coefficients. The front has been decoupled from the underlying
flow equation, and has been retained only as a means for computing the properties
at successive time steps. Note that one may choose any suitable method for the
system of equations in the computational domain. We use an MAC type operator
splitting/projection finite difference method. The original method solves the system in
following two explicit steps. The predictor consists of finding the intermediate velocity
u∗ by

ρn+1u∗ − (ρu)n

∆t
= −∇ · (ρuu)n + Fn + ∇ · τ n. (4.5)

where Fn is the body force, which includes in the present case the contribution due to
the interfacial tension. The density ρn+1(x) is evaluated by (3.11) from the new front
position attained by moving it explicitly with the velocity un. The spatial derivatives
are approximated by central differences in their conservative form. The corrector step
gives the final velocity at the next time step un+1,

un+1 − u∗
∆t

= − 1

ρn+1
∇pn+1. (4.6)

Taking the divergence of (4.6), and demanding that un+1 satisfies continuity, we obtain
the following Poisson’s equation for the pressure:

∇ ·
(

1

ρn+1
∇pn+1

)
=

1

∆t
∇ · u∗. (4.7)

A detailed description of the method can be found in Peyrot & Taylor (1986,
p. 160). We use a staggered grid; the boundary values for the nodes just outside the
computational domain are obtained by second-order interpolation. A zero Neumann
condition for pressure, as has been shown to be valid for this explicit method (Easton
1972), is imposed at the boundary. Note that the final velocity field un+1 is solenoidal
while the intermediate velocity u∗ is not.
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The above explicit scheme suffers from dual restrictions on time steps – from dif-
fusion at low Reynolds number (∆t < 0.25(∆x)2/ν), and from advection at high
Reynolds number (∆t < 2.0ν/U2

max) (see Peyrot & Taylor 1986, p. 148). For our par-
ticular applications relevant to emulsions, low Reynolds number cases are important.
As mentioned before, the available literature on emulsions is largely restricted to
zero Reynolds number cases, and we would like to compare our results with them.
To relieve the low Reynolds number restriction on time-step, we split the predictor
step further, and treat the diffusive terms by ADI. A similar treatment was first
successfully executed by Goda (1979) for cavity flows. The equation (4.5) for this step
is split into three parts,

ρn+1u∗∗∗ − (ρu)n

∆t
= −∇ · (ρuu)n + Fn + Dxy(u

n), (4.8)

ρn+1 u
∗∗ − u∗∗∗

∆t
= Dyy(u

∗∗), (4.9)

ρn+1 u
∗ − u∗∗

∆t
= Dxx(u

∗). (4.10)

Here the viscous term in (4.5) is expressed in three parts,

∇ · τ = Dxy + Dyy + Dxx. (4.11)

where Dxx and Dyy are terms involving double derivatives with respect to either x or
y, and Dxy are the mixed derivatives. While the mixed derivatives are treated along
with advection in an explicit manner (4.8), the terms that involve double derivatives
are handled implicitly along alternating directions, first y (4.9), and then x (4.10).
We note that all the terms are retained in their conservative form in contrast to the
treatment by Seth & Pozrikidis (1995). Each of these implicit equations gives rise to
a tri-diagonal system that is solved by Thom’s algorithm. However, while an explicit
scheme does not require boundary values for the intermediate variables (those with
asterisks), they need to be prescribed in an implicit method. We use

u∗ = u∗∗ = u∗∗∗ = un+1 at ∂Ω, (4.12)

and consequently the zero Neumann condition on the pressure is retained. It should
be noted that some early theoretical studies by Temam indicated that imposing final
step values on the intermediate variables at the boundary is a sufficient condition for
convergence as ∆x,∆t → 0 (Peyrot & Taylor 1986, p. 165). There have been several
attempts to improve the order of the method by contriving smart conditions for the
intermediate velocities and the pressure (Kim & Moin 1985; Karniadakis, Israeli &
Orszag 1991). However, recently Perot (1993) has shown that the present prescription
is consistent with an LU decomposition of the original operator. It seems to suffice
for our simulation.

Even though ADI formally removes the restriction on time steps, it is well known
that in practice care is required when implementing such a fractional step algorithm.
We also adhere to a CFL criterion ∆t < ∆x/Umax. Furthermore, the maximum norm
of the velocity field is monitored for any unsatisfactory behaviour, and the time step
is halved when warranted. An explicit Euler integration scheme has been used for
time marching. A multigrid method (Ferziger & Peric 1996, p. 106) is applied for the
solution of the Poisson equations for the pressure (4.7) and the indicator function
(3.16).
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5. Results
We non-dimensionalize the problem, using drop radius a and γ̇−1 as the length and

the time scales, respectively. For the steady problem there are four non-dimensional
parameters: Re = ργ̇a2/µ, k = Ca−1 = σ/(γ̇µa), λ = µ∗/µ, and λρ = ρ∗/ρ. For the
case of a vortex the non-dimensional frequency (Strouhal number) St = ω/γ̇ = 2.
However for general rotational or oscillatory extensional flows the non-dimensional
frequency assumes arbitrary values and signifies the effect of the periodicity. In the
following we drop the prime and refer only to the non-dimensional variables. Because
we have not considered gravity effects in our simulation, λρ appears in the problem
only through the drop Reynolds number Re∗ = Reλρ/λ. For brevity, we restrict
results to the case of λρ = λ = 1.0. Typical values for a drop of alcohol insoluble in
water are µ∗ = 0.018 g cm−1 s−1, ρ∗ = 0.82 gm cm−3 and σ, 1–10 dynes cm−1 (Davies
& Rideal 1963, p. 17). For such a drop of radius a = 1 cm suspended in water
(µ = 0.01 g cm−1 s−1, ρ = 1.0 gm cm−3) and γ̇ = 0.1 s−1, one obtains Re = 10, λ = 1.8,
λρ = 0.82 and k, 1000–10 000.

In the following we have studied drop deformation with the criterion originally
suggested by Taylor (1932, 1934), namely D = (L − l)/(L + l), where L (l) is the
maximum (minimum) distance of the drop surface from the centre. The criterion is
based on the experimental observation and asymptotic result that the drop takes on
an approximately elliptical shape in steady shear and extensional flows. However, for
an arbitrary deformation this criterion based on the distance between pairs of only
two surface points is extremely sensitive to the numerical description of the surface. In
figure 3 we compare the evolution of D at different resolutions for a drop in a vortex
with k = 7.599 and Re = 0.1. We note that drop shapes at any time instant (figure 3a)
are almost identical for different resolutions, and yet figure 3(b) shows significantly
different values of D. The present method, based on an interface smoothed over
4∆x, is inherently approximate for the exact location of the interface. The rate of
convergence for the long-time value of D is plotted in the inset of figure 3(b). Note
that according to Tryggvason et al. (1998) even though the difference scheme is second
order, the convergence rate is expected to be lower than quadratic due to smearing
of the interface. In the results presented here an 81 × 81 grid was used. Our choice
(16 grid points across the drop diameter) is based on the ability to describe the shape
rather than D. The effect of domain size was also investigated by increasing it to
twice the present size (Lx = Ly = 10.0) with no significant change in results. From
our convergence study and the satisfactory match with analytical results (Sarkar &
Schowalter 2001), we believe that the values of D computed below depict correct
trends.

5.1. Vortex

As mentioned earlier, the literature on emulsions is largely restricted to steady Stokes
flow. Our code is limited to low but finite Reynolds number. As a low Reynolds
number case that could be fruitfully compared with Stokes flow, we choose Re = 0.1.
Figure 4 shows the evolution of deformation D (defined above) with time for different
interfacial tensions. For k = 2.533, the drop experiences a very large growth and

Figure 3. Convergence with increased resolution: drop deformation in a potential vortex at Re = 0.1
and k = 7.599. (a) The drop shapes at a time instant t = 25.19. (b) Deformation with time. Inset
shows the error in D at a particular instant with resolution N, where N is the number of grid points
along one of the coordinate directions. The error is computed with reference to the value of D at a
193× 193 grid.
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Figure 4. Effect of interfacial tension on drop deformation in a potential vortex at Re = 0.1.
Inset shows the same in scaled variables.

quickly reaches the box boundary. However as k increases, deformation is inhibited
due to increased interfacial tension, and the drop remains bounded, as is evident for
k = 5.066, 7.599, 12.67 and 25.33. The curves are similar to those obtained for a
steady Stokes flow. For the latter it was shown by a perturbative analysis (Cox 1969)
that in the limit of small deformation (of the order ε = k−1), Dk ∼ 1 − exp(−tk).
The accompanying analytical work (Sarkar & Schowalter 2001), as well as the simple
ODE model in the Appendix (A 4) show the same. In the inset, D, accordingly scaled
by k, plotted against tk shows an approximate collapse onto one curve for different k,
except for the two lowest values of k. However it should be noted that the presence of
inertia and rotation destroys the exact time dependence with tk, as has indeed been
demonstrated by the simple model in the Appendix (A 5) as well as the first-order
Stokes analysis (Sarkar & Schowalter 2001). The apparent collapse onto a single curve
for different k is a result of the asymptotic limit of D ∼ k−1 for large k (the value
kD∞ ∼ 2.5 is considerably higher than the first-order Stokes flow result). At large
times, D reaches an almost constant value, as though an elliptic shape is rotating in
response to the rotating stretching field of the vortex. However we note that the drop
does not undergo rigid rotation: its deformation merely appears so.

In figure 5, we present the evolution of D with time for an intermediate Reynolds
number Re = 1.0. Here too we observe that increased interfacial tension leads to
a bounded growth. The solid and the dotted curves for k = 2.533 and 7.599 show
unbounded growth. It should be noted that for Re = 0.1 (figure 4) and k = 7.599, the
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Figure 5. Effect of interfacial tension on drop deformation in a potential vortex at Re = 1.0.
Inset shows the same in scaled variables.

interfacial tension effectively inhibits the deformation at D ' 0.3. As expected, higher
inertia leads to higher deformation. For k = 8.865, the drop shape reaches a bounded
shape and with increasing interfacial tension, the steady state D decreases as k is
increased. In the inset the evolution of Dk does not show as good a collapse as for
Re = 0.1. However, as is predicted in the Appendix the long-time Dk reaches ∼ 3.1
for large k. The initial overshoot in D is an effect of the increased Reynolds number
of the simulation. The overshoot is even more prominent in figure 6 for Re = 10.0.
The drop shapes (rotating counter-clockwise) plotted at early times (note that their
position does not correspond to the time axis) show that the drop experiences large
deformation initially, but settles down to lower values at later times. Again the scaled
variable Dk exhibits a long-time limit (∼ 8) independent of k. As has been shown in
the Appendix this is a result true for all Re; for higher Re, D ∼ k−1 scaling occurs
for larger values of k. As is evident from the above there is a critical k, below which
the interfacial tension is not sufficient to inhibit the growth of deformation. Previous
investigators (see Stone 1994) have analytically determined kcrit for steady Stokes flow.
Figure 7 shows the effect of Re on kcrit from our simulations for the vortex. As can be
expected with increased Re, kcrit increases sharply, indicating that higher interfacial
tension is needed to balance the inertia. Note that the present case is different from
the steady cases studied before, as the revolution due to the vortex also acts against
the growth of the drop, and therefore kcrit for a given Re is lower than for a steady
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flow. Increased viscosity ratio was found to reduce deformation, as is expected from
the steady Stokes flow analysis. Those results are not shown in the interest of brevity.

5.2. Rotating extensional (RE) flow

For the vortex the undisturbed flow is given by (3.5), with non-dimensional frequency
St = 2. However, in principle one could vary St independently. As a thought experi-
ment one could imagine a circular bath filled with a ferromagnetic fluid. Applying
opposite magnetic fields along a line through the centre (i.e. putting magnets of the
same polarity at opposite sides of the bath), one could set up a flow where the fluid
would be rotating in four cells due to mass conservation. Along two orthogonal
axes of the bath, flow would be towards and away from the centre, respectively,
creating a saddle point in the middle. A drop of a second ordinary fluid suspended
at the center is, therefore, in an extensional flow with shear rate γ̇, determined by
the strength of the applied magnetic fields. On rotating the magnetic field around
the bath with a frequency ω, the desired ‘rotating extensional flow’ is obtained in
the vicinity of the drop. Here we investigate such a general rotational extensional
flow (3.6).
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respectively, are numerically found at that Re.

5.2.1. Re = 0.1

We first performed the limiting case of a steady stretching flow, St = 0, with results
shown in figure 8. It is seen, as is expected, that for a low interfacial tension, k = 5,
the drop continues an unbounded deformation, but for sufficiently high tensions it
attains an equilibrium shape. In the inset we compare with the Stokes flow results of
Buckmaster & Flaherty (1973). Note that their large-deformation analysis is different
from our perturbative study in Sarkar & Schowalter (2001). They have provided an
approximate (their equation (3.6)) as well as a numerical solution that match very well
with each other (their figures 2 and 3). Here we have used the former for convenience.
Note that the variable B defined in Buckmaster & Flaherty (1973) corresponds to the
deformation. One can find the capillary number inverse k used here from the quantity
defined by their equation (3.6) and constant area constraint of the elliptic drop.
Comparison is satisfactory with enhanced deformation for finite Reynolds number
numerical results. As was noted by Buckmaster & Flaherty, two branches of a non-
unique curve meet at a value of k−1 = 0.18 (their scaled variable Ω = 4π

√
πk−1 ∼ 4.0).

They commented that here the drop dynamics changes character with the shape
displaying a flattened centre. They suggested possible onset of unsteady flow around
this point. Here we find that below k = 10, the drop tends to stretch indefinitely.

For the case of k = 8, we introduce the effect of the rotation of the stretching axes
by increasing St from zero. In figure 9, D is plotted as a function of time. It is seen
that the deformation decreases with increasing frequency. This can be explained by
the fact that due to the time dependence of the imposed flow, the point along the
drop surface that experiences maximum extensional rate changes with time. Therefore
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there is insufficient time to grow as much as in the steady case, the effect increasing
with increasing frequency. Similar to the case in a vortex, D attains an equilibrium
value, which is lower for higher frequency, after initial transient behaviour. Therefore
evolution of drop shape also appears to be close to a rotating ellipse as for the
vortex flow. It is shown in the Appendix that for large St long-time D ∼ St−1. StD
(except for St = 0) is plotted in the inset against (St)t, and it reaches a constant value
StD ∼ 1.06 for high St. Note that in the rescaled time the maximum for different
curves coincides, indicating that the transient behaviour is dominated by the unsteady
term.

In figure 10, we plot the x-coordinate of the point that is the maximum distance
(i.e. L ) away from the drop centre (5.0, 5.0), after decay of the initial transient. For a
purely periodic rotation of a rigid ellipse, the curve would execute sinusoidal motion,
and would provide the phase information of the drop response. Curves are plotted
for St = 0.8π, and varying interfacial tension. The drop response amplitude shows
the expected decrease with increasing interfacial tension. Moreover it also displays a
difference in phase lag, the interfacial tension acting as a spring component in the
damped system of the viscous flow. Hence its change gives rise to a change in phase
lag, as is characteristic of such systems.

In figure 11, we plot D for varying interfacial tension, at a fixed frequency St = 4π.
We find that with increasing interfacial tension, D reaches its steady value more
quickly. For lower interfacial tension the drop deformation oscillates with the forcing
flow. For the case of k = 1.0 the oscillation can readily be seen to correspond to
the forcing frequency (20 peaks in 20 periods). On closer scrutiny, the long-time
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Figure 11. Effect of interfacial tension on drop deformation in an RE flow at Re = 0.1 and
St = 4π. Inset shows long-time drop response for varying tension.

response reveals a surprising behaviour. D first increases with interfacial tension
(k = 1, 5, 10), before its final decrease (k = 50, 100, 200). We plot the asymptotic
values of D in the inset as a function of k. Here the rising portion is difficult to
distinguish. We encountered this characteristic non-monotonicity repeatedly throughout
our investigation. The decay of D as k−1 is also evident for large k.

In figure 12, we reinvestigate the effects of increasing frequency as in figure 9, but
with a higher interfacial tension, k = 45. For steady stretching, the drop reaches an
equilibrium shape due to the large interfacial force. As we increase the frequency,
the long-time steady value of D increases up to St = 6π and then decreases. The
emerging scenario of long-time D as a function of changing frequency shown in the
inset shows the narrow nature of the peak. The St−1 decay of D for larger frequencies
is also shown.

The non-monotonicity of the curves in figures 11 and 12 is the effect of reso-
nance in the forced damped oscillator system underlying the flow. In the Appendix
such a model oscillator with proper forcing terms is constructed to explain the be-
haviour. Here the interfacial tension acts as a spring, viscosity as a damper, and
the imposed periodic flow as the forcing. Unlike Stokes flow, owing to the finite
Reynolds number, the present case also has a true mass. So the system has a nat-
ural frequency which increases with interfacial tension, i.e k. For a fixed forcing
frequency, as in figure 11, the response peaks when the natural frequency is close
to the forcing frequency. A similar resonance occurs in figure 12, where the forcing
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frequency is varied, and the natural frequency is kept constant. The resonance was
not seen for the lower value of interfacial tension in figure 9 because in the limit
of zero frequency the spring force is not sufficient to balance the force due to the
flow and result in an equilibrium. Therefore the initial ascending branch is absent.
Similarly for the vortex with St = 2, the frequency is too low; there for small in-
terfacial tension the drop experiences unbounded growth, and increasing interfacial
tension leads to a monotonic decrease in the deformation. An approximate analyt-
ical solution is presented in Sarkar & Schowalter (2001) where the unsteady term
of the Navier–Stokes equation is retained that dominates the convective term for
large St. The results from this unsteady Stokes solution are in excellent agreement
with the present numerical results. There it was also shown that resonance is absent
in the Stokes solution. This substantiates our analogue to a damped mass–spring
system.

5.2.2. Re = 1.0

We first study the deformation for a steady stretching flow (figure 13), for here
the finite Reynolds number effect is evident even for a steady case. At the lowest
interfacial tension value k = 8, one observes sharp unbounded deformation. With
increasing interfacial tension, k = 10, 15 and 20, D reaches a steady value. However
there is an inertial overshoot in D before reaching the lower long-time equilibrium
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Figure 13. Effect of interfacial tension on drop deformation in a steady extensional
(RE with St = 0) flow at Re = 1.0.

value. In a steady Stokes flow, the drop would reach the equilibrium shape in a
monotonic way. There the forces acting on the drop are always in equilibrium, giving
rise to zero acceleration and eliminating any possibility of overshoot. Increasing the
frequency from the steady case for k = 8 (top curve in figure 13) shows effects (figure
not shown) similar to Re = 0.1 (figure 9), in that the deformation becomes bounded,
and attains lower long-time values with increasing frequency.

At k = 20 the time evolution of D shows non-monotonicity (figure 14) with
increasing St. Note that in the initial transient period close to the start-up, shown
in the inset, there is a crossing of the evolution curves. It is as though the evolution
starts out in accordance with our expectation – increased frequency leads to decreased
deformation – but then changes character leading to a crossover around t = 0.6. The
long-time D values for fixed frequency and fixed interfacial tension are plotted in
figure 15. The long-time D versus frequency has been plotted for k = 20 and 200.
For the smaller k, the resonance structure occurs at a lower St (St ∼ 6) whereas for
the larger k, it is near St = 20. The shift in natural frequency is due to the change
in the spring component of the system caused by variation of interfacial tension.
For St = 4π, the time evolution of D for various k again reaches long-time constant
values that are plotted. They increase with increasing interfacial tension until k = 70,
and then sharply decrease. All the curves show the typical inverse decay with k and
St for large values.
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Figure 14. Effect of frequency on drop deformation in an RE flow at Re = 1.0 and k = 20.
Inset shows a magnification at small times.

5.2.3. Re = 10.0

For Re = 10.0, we first investigate D for a steady stretching flow in figure 16. For
lower interfacial tension (k = 8, 16 and 30), the deformation quickly grows and the
drop reaches the domain boundary. However for k = 40, 50, 80 and 200 meaningful
shapes are obtained in the long-time limit. Here oscillations in D are more pronounced
than in the lower Reynolds number cases. For k = 80 and 200, D reaches zero before
it attains its equilibrium value. We show this phenomenon in more detail in the inset,
where the maximum (L) and the minimum (l) dimensions of the drop for k = 80
are shown. In essence the drop experiences multiple growth–collapse cycles before
reaching an equilibrium shape. Similar growth–collapse cycles are observed in the
inertia-dominated oscillation of a pressurized bubble (Blake & Gibson 1987). The
drop shapes at various times (corresponding approximately to the time axis) show
that the drop ‘snaps back’ to such an extent that the major axis is orthogonal to the
applied strain rate at t = 1.32 (the second drop trace from the left) during the second
cycle. However it reverts back to being along the extension axis in the third cycle and
remains so in the fourth cycle and afterward.

The time-periodic simulation with non-zero St, for Re = 10.0 proves computation-
ally intensive, because of small time steps and slower disappearance of transients.
For a fixed value of k = 200, a simulation is performed for varying forcing frequency
(figure 17). D increases with increasing frequency St = π, 2π and 3π, and executes
large oscillations over the full length of computation (t = 30). At still higher forcing
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frequencies, St = 4π, and 10π, D decreases. The long-time value of D with varying
frequency is shown in the inset. Because of the slow decay near St = 3π, single
long-time values were not obtained.

Figure 18 shows the resonance with changing interfacial tension for a fixed forcing
frequency St = 4π. As with the case of fixed St, there is a gap near resonance, where
long-time values are not available.

5.3. Oscillatory extensional (OE) flow

One could set up an oscillatory extensional flow in a four-roll mill. For a steady
extensional flow the rolls are rotated at the same steady rotation, adjacent rolls in
opposite directions. An oscillatory extensional flow (3.7) can be generated by varying
the rotational rate in an identical time-periodic way for all the rolls.

The imposed flow again reduces to a steady extensional flow for St = 0. Our main
interest here is to study the effects at non-zero St, more specifically the resonance
phenomena that have been seen for the rotational flow in the above section. In
figure 19 we show D as a function of time for varying frequency at Re = 0.1 and
k = 45. Here, unlike the RE flow, D undergoes oscillations, reaching the undeformed
value of zero. Note that the maximum value of D indeed first increases and then
decreases with increasing frequency. Values of Dmax are shown in figure 20 for
Re = 0.1 and 1.0 at a fixed St and varying k, and fixed k and varying St along with
corresponding curves of D from RE flows. It is shown that even though the flows



200 K. Sarkar and W. R. Schowalter

0 2.5 5.0 10.0
t

D

0.15

0.10

0.05

k

0.5

0.4

0.3

0.2

0.1

k = 10

k = 100

k = 400

k = 700

k = 800

100

7.5 12.5

101 102

D

15.0

103 104

Figure 18. Effect of interfacial tension on drop deformation in an RE flow at Re = 10 and
St = 4π. In the inset long-time drop response for varying tension is shown.

are very different in nature, the response in terms of long-time values of Dmax shows
surprising similarity as long as the defining characteristic St is kept the same. This
further indicates the utility of the oscillator in explaining the essential physics of these
flows.

6. Summary
We have numerically simulated the deformation of a two-dimensional drop in a

potential vortex and other related flows at finite Reynolds numbers. An ADI front-
tracking method was used. It incorporates modifications to earlier versions in order
to extend the diffusion-dominated limits that have heretofore prevented applications
to the low Reynolds numbers of interest here.

The velocity field due to the vortex has been modelled in the vicinity of the drop
by a linear flow with time-periodic variation. The linearization introduces an error
that is of higher order in a/R. This linearization will not be satisfactory if the drop
undergoes continuing large deformation, such as would be the case if the interfacial
tension were zero. In the cases reported here, linearization is believed to be a valid
approximation.

The results show that in vortex-induced flow for low interfacial tension the drop
experiences unbounded deformation. However above a critical value of k, the drop
was found to reach a steady value of deformation even though the axes of deformation
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Figure 19. Effect of frequency on drop deformation in an OE flow at Re = 0.1 and k = 45.

revolve with the flow. Increased inertia leads to pronounced overshoot in deformation
during the initial transient behaviour. With higher Reynolds number the deformation
increases, and displays longer and more pronounced transients. Increased viscosity
ratio leads to decreased deformation.

We also investigated drop deformation in a rotating extensional (RE) flow and an
oscillatory extensional (OE) flow. The first is a generalization of the vortex-induced
flow with the frequency of rotation varying independently of the shear rate. Therefore
the behaviour is similar to that in a vortex, in that a drop reaches a steady value of
deformation in the long-time limit.

In the zero frequency limit both of these flows reduce to steady extension. We have
successfully compared the long-time equilibrium value of D in steady extension with
those from the Stokes flow analysis performed by Buckmaster & Flaherty (1973).
Finite inertia has significant effects on the transient and the long-time deformation
of the drop. In contrast to a Stokes flow, the process of reaching an equilibrium
shape in a steady flow is not monotonic, but the drop deformation overshoots before
attaining the final state. For higher values of Reynolds number, the drop experiences
an axis reversal, where the drop grows, collapses back to a circle, and then grows in
an orthogonal direction. There are multiple growth–collapse cycles with or without
axis reversal before the shape reaches a steady state.

In an RE flow, introduction of periodicity predictably leads to reduced deformation,
which is the same response as that due to increasing the interfacial tension or the
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Figure 20. Long-time drop responses for RE (solid) and OE (dotted) flows for varying (a) interfacial
tension at Re = 0.1, St = 4π; (b) frequency at Re = 0.1, k = 45; (c) interfacial tension at Re = 1.0,
St = 4π; (d) frequency at Re = 1.0, k = 200.

viscosity ratio. A drop experiencing unbounded growth in a steady flow, reaches a
bounded shape in an RE flow, when other parameters are unchanged. The drop shape
in this state displays considerable interfacial-tension-dependent phase lag. The inverse
power law decay in response observed with variation in frequency and interfacial
tension is explained by the model presented in the Appendix. With increasing Reynolds
number the initial transient is of course longer.

In both RE and OE flows, finite Reynolds number and periodic forcing introduce
interesting physics to the problem. With increasing interfacial tension and forcing
frequency, the long-time deformation value undergoes a resonance phenomenon,
where deformation first increases, and then decreases. The behaviour is quantitatively
similar in these two dissimilar flows. The effect is due to a resonance in the ‘forced–
damped mass–spring’ system underlying the flow, interfacial tension and viscosity
playing the role of the spring and the damper, respectively. Because of the lack of
inertia (‘mass’), an identical periodic simulation in the Stokes flow limit would not
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display such resonance. The long-time behaviour, including the resonance, is dealt
with analytically in a companion paper (Sarkar & Schowalter 2001). However a
simple oscillator model, presented in the Appendix, elucidates the essential physics of
the deformation process, including the resonance and large k/St scalings. Note that
the model, for which the relevant non-dimensional parameters such as Re, k and St
are defined, is not limited to two-dimensional flows, and therefore indicates that the
present observations are also expected in three-dimensional simulations as well as in
experiments.
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Appendix
In a companion paper (Sarkar & Schowalter 2001) we have performed a perturba-

tive analysis of the unsteady Stokes problem for drop deformation that captures the
resonance characteristics shown in this paper. However the physical significance of
different terms in the complex algebraic expressions can be difficult to identify. Here
we have constructed a simple ODE model to describe the underlying physics of the
drop deformation problem. Most of the salient features, including the different scaling
observed in the numerical results, can be qualitatively explained by this model.

The deformation due to an external flow at a finite Reynolds number can be
modelled as a damped mass–spring system with mass ρ̂â3, damping µ̂, and interfacial
tension σ̂,

ρ̂â3Ẍ + µ̂âẊ + σ̂X = µ̂âG0g(t) + ρ̂â3G0ġ(t), Ẋ(0) = G0g(0), X(0) = 0, (A 1)

where a hat has been used to differentiate the model variables from their real
counterparts. The forcing terms in the right-hand side have been chosen to mimic
the effect of the flow. The first forcing term corresponds to the viscous stress µγ̇.
The second term represents the pressure forcing. From the momentum equation,
ρ∂u/∂t ∼ ∇p, one can see that a time-dependent velocity G0g(t) will give rise to
such a pressure (G0 is the magnitude). The initial conditions reflect an undeformed
drop moving with the imposed flow velocity. For a drop having density ρ∗ = λρρ,
and viscosity µ∗ = λµ, different from that of the continuous phase, the mass and the
damping terms in the above equations are modified by factors (1+λρ)/2 and (1+λ)/2,
respectively. Note these factors reduce to unity for identical material properties in
two phases. By scaling length by â and time by â/G0 we obtain

(1 + λρ)

2
R̂e Ẍ +

(1 + λ)

2
Ẋ + k̂X = g(t) + R̂e ġ(t), Ẋ(0) = g(0), X(0) = 0, (A 2)

where R̂e = ρ̂âG0/µ̂ and k̂ = σ̂/(µ̂G0) are the Reynolds number and inverse capillary
number of the model problem. Note that the pressure forcing is absent for Stokes
flow (R̂e = 0), and one obtains

(1 + λ)

2
Ẋ + k̂X = g(t), X(0) = 0. (A 3)
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In that case for a constant external flow (g(t) = 1) the solution is

X = k̂−1(1− e−2k̂t/(1+λ)), (A 4)

which shows that Xk̂ is a function of k̂t/(1 + λ), and moreover X → k̂−1 as t → ∞.
However for a time-periodic flow such as in the present work (vortex, RE, OE flows),
g(t) = exp(iŜ tt), one can see that time dependence of deformation |X| is not just a

simple function of k̂t (in the case of λ = 1) as has been noted in the section on vortex
flow above. In fact the solution is

X =
2eiŜ tt(1− e−(δ+iŜ t)t)

(1 + λ)iŜ t+ 2k̂
, δ =

2k̂

1 + λ
. (A 5)

For non-zero Reynolds number, we look for a time-periodic solution X=X̃ exp(iŜ tt),
and obtain (the long-time behaviour)

X̃ =
1 + iŜ t R̂e

− 1
2
(1 + λρ)Ŝ t

2
R̂e+ i 1

2
(1 + λ)Ŝ t+ k̂

, (A 6)

clearly showing the resonance characteristic of such systems, which disappears for

R̂e = 0. Equation (A 6) shows no direct scaling with k̂. Even for Stokes flow X̃ =

[i(1 + λ)Ŝ t/2 + k̂]−1 with no power law dependence on k̂. However for k̂ → ∞, we

recover the asymptotic scaling X̃ ∼ k̂−1.

Keeping all other parameters constant, for Ŝ t → ∞ we obtain X̃ ∼ Ŝ t
−1

, for both
zero and non-zero Reynolds number. This behaviour is amply demonstrated by the
numerical solution. Note that the pressure forcing term ∼ Ŝ t in the numerator is
necessary to preserve the −1 power. Otherwise, for non-zero Reynolds numbers, the

analysis would have erroneously predicted X̃ ∼ Ŝ t−2
.

Some other interesting observations can be procured from expression (A 6) that
are of value for interpreting the analytical results in Sarkar & Schowalter (2001). In

the limit of k̂ → ∞, the asymptotic expression ∼ k̂−1(1 + iŜ tR̂e) is only a function of
Ŝ tR̂e. For Ŝ t→∞, the asymptotic expression ∼ [Ŝ t(1 + λρ)/2]−1 is only a function of
λρ. In the limit of k → 0, for λ = λρ = 1, the drop is passively advected, and therefore

(A 6), that misleadingly indicates R̂e dependence, should be discounted. Instead, the
limit is only a function of Ŝ t, for in this limit of passive advection the Stokes solution
itself is an exact solution of the full equation. On the other hand, the Ŝ t→ 0 limit is

independent of all variables except k̂.

One other interesting limit is attained by letting R̂e→ ∞. In this case the solution

reaches a constant value, Ŝ t
−1

(1+λρ)/2. In fact in the companion paper the analytical
solution matches this prediction. The present model is not expected to match the actual
numerical value. However, in this particular case it so happens that the multiplying
constant of proportionality turns out to be unity. Note again that absence of pressure

forcing would have made the deformation vanish with R̂e
−1

. This limit is not the
same as that of the inviscid potential flow, where due to vanishing viscosity µ̂, we

also obtain k̂ = σ̂/(µ̂G0) → ∞, but k̂′ = k̂/R̂e = σ̂/(ρ̂âG2
0) reaches a constant value,

and hence the equation becomes

1
2
(1 + λρ)Ẍ + k̂′X = ġ(t), Ẋ(0) = g(0), X(0) = 0, (A 7)
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giving rise to a response

X̃ =
iŜ t

− 1
2
(1 + λρ)Ŝ t

2
+ k̂′

, (A 8)

with resonance at Ŝ t =

√
2k̂′/(1 + λρ).

It is pertinent here to mention that a similar model ODE was studied by Kang
& Leal (1990) in the context of bubble oscillation. Their model is derived from an
asymptotic analysis for the critical Weber number in a steady inviscid straining flow
(Kang & Leal 1988) coupled with Lamb’s approximation of the damping term on the
basis of dissipation (Lamb 1932, p. 640).
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